Функция Кобба-Дугласа получена в результате математического преобразования простейшей производной функции У= F(L, К) в такую модель, которая показывает, какой долей совокупного продукта вознаграждается участвующий в его создании фактор производства. Она имеет следующий вид:
Y = АКаLb
Наушники авито объявления в москве купить. Dj наушники купить www.allfordj.ru. где а изменяется в пределах в пределах от 0 до 1, a b = 1 - а |
Функция Кобба-Дугласа - модель с двумя переменными факторами производства. Параметр А - коэффициент, отражающий уровень технологической производительности и в краткосрочном периоде он не изменяется. Показатели а и b - коэффициенты эластичности объема выпуска (Y) по фактору производства, т. е. по капиталу К и труду L соответственно. При этом если каждый из факторов оплачивается в соответствии со своим предельным продуктом, то а и b показывают доли капитала и труда в совокупном доходе. Иными словами, если цена капитала равна предельному продукту капитала, а цена труда равна предельному продукту труда, то параметры а и b определяют пропорцию, в которой труд и капитал получают свое вознаграждение за созданный продукт, т. е. долю капитала в доходе aY и долю труда в доходе bY. Так как b = 1 - а, то а +b = 1 , из чего следует, что мы имеем дело с постоянной отдачей от масштаба. Интересно рассмотреть эмпирические значения параметров функции Кобба-Дугласа: А = 1,1; а = 1/4; b = 3/4. Следовательно, доля капитала в национальном доходе составляет 25%, а доля труда - 75%.
В поисках путей наибольшей эффективности производства нас всегда должна интересовать предельная производительность участвующих в нем факторов, с помощью которой определяется оптимальный объем используемых ресурсов. Предельный продукт капитала в МРК пропорционален отношению доли капитала в доходе к объему использованного капитала: МРК = аY/К. Аналогично определяется и предельная производительность труда: MPL = bY/L
Рассмотрим свойства производственной функции Кобба-Дугласа.
Первое свойство - постоянство отдачи от масштаба
- описывается формулой F(nK,nL) = п АКаLb и означает, что если увеличить использование капитала и труда в n раз, то объём совокупного спроса, или объём дохода, возрастает в такое же число раз.
Второе важное свойство функции Кобба-Дугласа связано с изменением предельной производительности факторов.
Например, если привлечь в производство дополнительное количество капитала К, а труд L использовать в прежнем объёме, то, при прочих равных условиях предельная производительность МРL , а производительность возросшего объема капитала МРК снизится. Если же увеличить количество труда, при прочих равных условиях, то его предельная производительность снизится, а предельная производительность капитала возрастёт. Вывод: нарушение пропорций между трудом и капиталом при заданной технологии приводит к отклонению от оптимального объёма производства, т. е. к неэффективности производства и означает, что если увеличить использование капитала и труда в п раз, то объем совокупного выпуска, или объем дохода, возрастет в такое же число раз.
Однако, если мы увеличим параметр А, например, внедрив более производительную технологию, то получим одновременное увеличение МР и МР, что является условием интенсивного экономического роста.
Третье свойство производственной функции Кобба-Дугласа - постоянство отношения дохода от труда к доходу от капитала
(b /а), т. е. постоянство соотношения долей капитала и труда в национальном продукте.
Исследования американского сенатора и экономиста Пола Дугласа показали, что в Соединенных Штатах за сорок лет (с 1948 по 1989 гг.) соотношение b/а колебалось в пределах между 2 и 32, в результате чего оплата труда в 2-3 раза превышала вознаграждение капитала. Можно предположить, что постоянные рамки колебания соотношения b/а заданы технологически. Колебания b/а внутри этих рамок могут быть объяснены отклонением в соотношении I и S, так как вряд ли заработная плата, шкала налогообложения и нормы амортизации почти ежегодно могли претерпевать значительные изменения.